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Abstract
The effective potential between charged colloids trapped at water interfaces is
analysed. It consists of a repulsive electrostatic and an attractive capillary part
which asymptotically both show dipole-like behaviour. For sufficiently large
colloid charges, the capillary attraction dominates at large separations. The
total effective potential exhibits a minimum at intermediate separations if the
Debye screening length of water and the colloid radius are of comparable size.

In view of various basic and applied issues such as the study of two-dimensional melting [1],
investigations of mesoscale structure formation [2] or engineering of colloidal crystals on
spherical surfaces [3], the self-assembly of sub-micrometre colloidal particles at water–
air or water–oil interfaces has gained much interest in recent years. These particles are
trapped at the interface if water wets the colloid only partially. This configuration is stable
against thermal fluctuations. It appears to be even the global equilibrium state, because it is
observed experimentally that the colloids immersed in the bulk phases are attracted towards
the interface [1]. For charge-stabilized colloids at interfaces, the repulsive part of their mutual
interaction is well understood and resembles a dipole–dipole interaction at large separations.
This asymptotic interaction is caused by charges at the colloid–water interface [4] or by isolated
charges at the colloid–air (or oil) interface [5]. Nonetheless, charged colloids at interfaces
also exhibit attractions far beyond the range of van der Waals forces. According to [6–11],
polystyrene spheres (radii R = 0.25–2.5 µm) on flat water–air interfaces using deionized
water exhibit the spontaneous formation of complicated metastable mesostructures. They are
consistent with the presence of an attractive, secondary minimum in the effective intercolloidal
potential at separations d/R ≈ 3–20 with a depth of a few kBT . In [12], PMMA spheres with
radius R = 0.75 µm were trapped at the interface of water droplets immersed in oil. Here,
the secondary minimum has been detected at a separation d/R = 7.6 and is reported to
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be surprisingly steep. The tentative explanation of these findings given in [12] invokes an
analogue of long-ranged flotation or capillary forces which decay ∝1/d . This interpretation
was criticized in [13, 14], both of which concluded that possible capillary forces in this system
are much shorter ranged, i.e., ∝d−7, but the authors of these articles disagree with respect to
the sign of these shorter-ranged forces. Recently we have shown [15] quite generally that long-
ranged flotation-like forces ∝1/d can only arise in mechanically non-isolated systems. For
isolated systems the capillary force is indeed much shorter ranged, and within a superposition
approximation the power law discussed in [14] is found. For the experiment involving the
interface of a mesoscopic droplet [12], mechanical isolation may indeed be weakly violated
and thus small flotation-like forces can appear. Their interplay with capillary forces arising
from the droplet curvature is not yet clear, and is currently under scrutiny [16]. On the
other hand, for experiments performed on flat interfaces [6–11], mechanical isolation holds
if there is no external electric field present and thus for them flotation-like forces cannot give
rise to the observed attractions. Out of other attempts to explain the nature of this colloidal
pattern formation we mention [17], in which this is attributed to oil contaminations of the
interface, and [10], in which colloidal roughness is proposed as a source of attractive capillary
interactions. At present, these attempts to explain the observed colloidal patterns at interfaces
are only of qualitative nature.

Thus a theoretically sound mechanism for the appearance of an attractive minimum in
the intercolloidal potential at large separations has not yet been found. Here we analyse
the interaction between colloids at interfaces within the approach developed in [15] for
a mechanically isolated system and we provide conditions for an asymptotically attractive
intercolloidal potential and for the appearance of such a minimum.

In going beyond the superposition approximation studied in [15], we derive the full
capillary interaction potential between two colloids as a functional of a general stress field
acting on the interface. This capillary potential is studied for two cases: (i) the Debye
screening length of water, κ−1, is much smaller than the colloid radius R, and (ii) R and
κ−1 are of comparable size. For a sufficiently high charge on the colloids, in both cases the
ensuing capillary attraction turns out to be asymptotically stronger than the direct repulsion.
Moreover, in case (ii) a minimum in the total (repulsive plus capillary) intercolloidal potential
is found at intermediate separation κdmin � 10.

We consider two spherical colloids α = 1, 2 trapped at a deformed interface (meniscus)
with vertical coordinate z = û(r = (x, y)). We denote ĥα as the vertical coordinate of the
centre of colloid α and rα its lateral position so that d = |r1 − r2|. We define a reference
configuration (with respect to which free energy differences are measured) by a flat interface
u = 0 and hα,ref = −R cos θ . Here, θ is Young’s angle and thus in the reference configuration
the colloids are vertically positioned such that Young’s law holds at the horizontal three-phase
contact circle with radius r0,ref = R sin θ . The corresponding free energy is given by [15]

F̂ = γ

∫
Smen

d2r

[ |∇û|2
2

+
û2

2λ2
− �̂

γ
û

]
+

∑
α=1,2

{
γ

2r0,ref

∮
∂Sα

d� [	ĥα − û]2 − F̂α	ĥα

}
. (1)

The first line of equation (1) comprises free energy differences associated with the change in
meniscus area, in meniscus gravitational energy (γ is the water–air surface tension and λ is
the capillary length) and with forces on the meniscus; the stress �̂ denotes the vertical force
per unit area on the meniscus in the reference configuration. The first term in the second line
takes into account the changes in water–colloid and air–colloid surface energies; 	ĥα is the
difference in colloid centre position with respect to the reference configuration. The second
term describes the energy difference if colloid α is shifted by the force F̂α (which is evaluated in
the reference configuration). Sα is the circular disc of radius r0,ref delimited by the three-phase
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contact line ∂Sα formed on the colloid α by the fluid interface in the reference configuration
(traced counterclockwise), and Smen = R

2\(S1
⋃

S2). This expression for the free energy is
valid as long as the deviations from the reference configuration are small: |û|/r0,ref , |∇û| � 1.
A sufficient condition for this is |εF̂ | � 1, with εF̂ := −F̂α/2πγ r0,ref . Mechanical isolation
implies 2F̂α = − ∫

Smen
d2r�̂, i.e., the forces on the colloids are balanced by the force on the

meniscus [15]. The meniscus-induced effective potential between the colloids is defined as
Vmen(d) = F̂(û, ĥα|eq; d) − F̂(û, ĥα|eq; d → ∞). The equilibrium free energy is found by
minimizing equation (1) with respect to û and ĥα . The equilibrium meniscus shape for the two
colloids being infinitely apart is given by the superposition û(d → ∞) = u1 + u2 of the single
colloid menisci, obtained in the presence of the stress field �̂(d → ∞) = �1 + �2. Here,
uα = u(|r−rα|) is the equilibrium meniscus around one colloid and likewise �α = �(|r−rα|)
is the stress field on the interface caused by a single colloid. Furthermore we define the single-
colloid quantity εF = ∫

R2\S1
d2r �/2πγ r0,ref . For finite d , the stress field can be written as

�̂(d) = �1 + �2 + 2�m and likewise we decompose û(d) = u1 + u2 + um. Minimization of
equation (1) yields

∇2um − um

λ2
= −2�m

γ
, (2)

with the boundary condition um = 0 for r → ∞, and at r ∈ ∂Sα (β �= α):
∂(um + uβ)

∂nα

= εF̂ − εF +
um + uβ − 〈um + uβ〉α

r0,ref
, (3)

with 2πr0,ref 〈·〉α ≡ ∮
∂Sα

(·) d�. The superposition approximation entails �m = um = 0 for
all d (i.e., εF̂ = εF ), and was analysed in [15]. To identify the corrections to it, we write
Vmen = Vsup[�] + Vm[�̂] and obtain after some algebra (in the following we consider λ → ∞;
this limit can be safely taken in the case of mechanical isolation [15])

Vsup =
∫

S1

d2r�2u2 −
∫

Smen

d2r �1u2 + 2πγ r0,refεF 〈u2〉1,

Vm = −
∫

Smen

d2r (�2um + 2�mu2 + �mum) + 2πγ r2
0,ref

×
[
(ε2

F − ε2
F̂
) + εF̂

〈um〉1

r0,ref
− (εF − εF̂ )

〈u1 + u2〉1

r0,ref

]
.

(4)

In the following, we apply this general expression for the capillary potential within two
electrostatic models which provide explicit expressions for � and �m. Generically, the
water phase contains screening ions which lead to a finite Debye screening length κ−1 =
(ε2/8πβc0e2)1/2, where c0 is the concentration of monovalent ions, e is the elementary charge,
and β−1 = kBT . We denote by ε1, ε2, εc the permittivities of air, water, and the colloid,
respectively, using Gauss units.

(1) κr0,ref � 1. The electrostatics of the single-colloid configuration has been analysed
in [18] with the result that only charges at the colloid–air interface generate a stress on the
interface. The potential �0 at the air–water interface is small so that the interface resembles a
perfect conductor. According to [18],� ≈ (ε1/8π)E2

z,0+ , where Ez,0+ denotes the z-component
of the electric field right above the interface, leading to the following robust parametrization
of the corresponding numerical results:

�(r) = γ εF

r0,ref
b(µ)

(
r

r0,ref
− 1

)µ−1( r

r0,ref

)−µ−5

, (5)

where εF > 0, b = µ(µ + 1)(µ + 2)(µ + 3)/6 and µ ∈ (0, 1) is a fitting parameter depending
on εc and the contact angle θ . � has an integrable divergence as r → r0,ref and rapidly
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(i.e., r � 2r0,ref ) reaches its asymptotic dipole behaviour ∝r−6. The dipole asymptotics
renders the repulsive part of the intercolloidal potential Vrep for large d ,

Vrep = 4πγ r2
0,refεF b(µ)

(
r0,ref

d

)3

, (6)

and �m = (�1�2)
1/2 because the electric field of the two-colloid configuration is the

superposition of the electric fields in the single-colloid configurations. This stress is strongly
peaked around the colloid centres and the main contribution in equations (4) stems from the
regions around the colloids as d → ∞. Therefore, in order to obtain Vmen to leading order in
1/d one can employ the approximation �m ≈ �1/2(d)(�

1/2
1 + �

1/2
2 ) to solve equations (2)

and (3) and to evaluate the integrals in equation (4):

Vmen(d) ≈ −2πγ r2
0,refε

2
F

(
r0,ref

d

)3 8b(µ)

µ + 1
[1 + M(µ)]. (7)

Here, the function M(µ) is given by a lengthy analytical expression; it increases almost linearly
for µ ∈ (0, 1) with M(0) = 0 and M(1) = 1/5. The leading asymptotic behaviour ∝d−3

stems from Vm (the superposition approximation predicts Vsup ∝ d−6 [15]). The repulsive
and capillary forces decay with the same power but with opposite signs of the amplitudes.
Hence, the total intercolloidal potential will be attractive if εF > εF,crit = (µ+1)/4[1 + M(µ)]
with 1/4 < εF,crit < 5/12 for 0 < µ < 1. The appearance of capillary attractions thus
depends sensitively on the colloidal charge via εF . These critical values for εF are at the
limit the maximum deviation for the meniscus occur at the three-phase contact line and are
given to leading order in 1/d by the single-colloid solution: |∇û| ≈ εF , û/r0,ref ≈ −µεF/4.
Experiments which are performed in the limit κr0,ref � 1 [5, 18] estimate charge densities on
the colloid–air surface compatible with 0 < εF � 1 and thus the electrostatic repulsion would
always be stronger than the capillary attraction. Even if εF were large enough such that the
capillary attraction would dominate, equations (6) and (7) would not render a minimum in the
total potential at intermediate separations. However, the possibility for the occurrence of such
a minimum arises outside the regime κr0,ref � 1.

(2) κr0,ref � 1. In this regime, κ−1 provides an additional length scale which leads
to interesting crossover phenomena, and the charges on the colloid–water surface are not
completely screened in the range of separations of interest. The stress is given by

� = ε1

8π

(
1 − ε1

ε2

)[
E2

z,0+ +
ε2

ε1
E2

‖,0

]
+ posm. (8)

Here, Ez,0+ and E‖,0 are the perpendicular and the parallel component of the electric field at
the interface on the air side. The osmotic pressure posm = β−1	n is generated by the excess
ion number density 	n at the interface on the water side. In order to solve the electrostatic
problem, we introduce two simplifications: the Debye–Hückel approximation, and the point-
charge approximation, by which the total charge q of the colloid is concentrated at the centre
of Sα . Then the osmotic pressure is given by posm = (ε2/8π)κ2�2

0 and the electrostatic
repulsion between two colloids by Vrep(d) = q�0(d), where �0 is the electrostatic potential at
the interface. Vrep exhibits a crossover from a screened Coulomb repulsion to a dipole repulsion
at κdc ≈ 8–10 [4]. The single-colloid stress, equation (8), is dominated by E‖,0 and posm for
κr < 6–8, yielding �(r) ∝ exp(−2κr)/r4. For larger distances, it is dominated by Ez,0+ and
the familiar dipole form arises, �(r) ∝ r−6. The stress �̂ exerted by two colloids can again be
determined by superimposing the electric fields and potentials of the single-colloid solution,
leading to

�m = ε1

8π

(
1 − ε1

ε2

)
(Ez,0+)1(Ez,0+ )2 +

ε2 − ε1

8π
(E‖,0)1(E‖,0)2 cos φ +

ε2

8π
κ2(�0)1(�0)2. (9)
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Figure 1. The capillary potential (left panel) obtained from the full numerical solution in units of
V0 = q2κ2r0,ref /2πε2 for κr0,ref = 0.1–1.0 and the parameters ε2/ε1 = 81 and κλ = 100. The
peak approximation fails for κd � 8. The total intercolloidal potential Vtot = Vmen + Vrep (right
panel) for εF = 0.6 and the same parameters and units.

(This figure is in colour only in the electronic version)

As before, the subscript α = 1, 2 denotes evaluation of the single-colloid function at |r − rα|
and cos φ = (r − r1) · (r − r2)/|r − r1 ‖ r − r2|. In the limit d � dc, um and Vmen can be
estimated via an expansion in 1/d using a peak approximation for �m as before. This yields
an asymptotically attractive capillary potential which again decays ∝d−3. For intermediate
separations d , we have compared these results with a full numerical solution to equations (2)
and (3) without any approximation for �m or Vmen. In figure 1 (left panel) we show the
results for Vmen. For d > dc the 1/d-expansion and the numerical results agree with each
other, both exhibiting the dipole-like asymptotic behaviour. For smaller d the extrapolated
1/d-expansion predicts a repulsive capillary potential which is borne out by the numerical
results only partly as κr0,ref → 1. The superposition contribution Vsup is again negligible
in the expression for Vmen. The total intercolloidal potential Vtot = Vmen + Vrep is depicted
in figure 1 (right panel) for the exemplary value εF = 0.6. Asymptotically Vtot is attractive
for εF > εF,c ≈ 0.34[1 + 0.30/(κr0,ref)

2]1/2, obtained from a fit to numerical results for
κr0,ref ∈ [0.1, 2.0].

A quantitative comparison with experiments is difficult because the three important
quantities q , θ , and κ−1 which enter into εF and the scale of Vmen have not been determined
separately for the same system. Therefore, we can only estimate whether a minimum as
obtained in figure 1 can occur in actual experiments. For almost all experiments pure
water is claimed to have been used, for which κ−1 ≈ 1 µm. The total charge is given by
q = 2πσ R2(1 + cos θ) where σ is the charge density. Thus, for colloids with R = 0.5 µm
and θ = π/2 at pure water–air interfaces (γ = 0.07 N m−1), we obtain numerically
εF ≈ 45(σnm2/e)2. The potential scale at T = 300 K is given by V0 = q2κ2r0,ref/(2πε2) ≈
1.4×108 kBT (σ nm2/e)2. The value εF = 0.6 used in figure 1 corresponds to a charge density
σ = 0.12 e nm−2 (literature estimates for the actual charge density vary between 0.07 [6] and
0.53 [10] e nm−2), in which case V0 = 2 × 106 kBT . For κr0,ref = 0.5, the minimum in the
total potential (see figure 1) occurs at κdmin ≈ 13 with Vmin ≈ −1.6 × 10−5V0 = 32 kBT .
This minimum is shallow enough that thermal movements of the colloids around the minimum
position should be visible, similar to reports in the literature.

Such large charge densities actually call for solving the Poisson–Boltzmann equation near
the colloids. Incorporating the correct geometry, this is a very involved numerical task and will
be considered in future work. From that we expect the following modifications: the screening
ions will concentrate near the colloid in a layer with thickness of a few nanometres (as given
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by the Gouy–Chapman length lG = 8πε2/(βeσ)). Outside this layer, the colloids appear as
heavily screened objects with an effective charge qeff and the Debye–Hückel approximation is
valid. This charge qeff enters both the electrostatic repulsion and the capillary attraction such
that asymptotically Vrep ∝ q2

eff(r0,ref/d)3 and Vmen ∝ εF q2
eff(r0,ref/d)3. The total force on one

colloid (as expressed by εF ) is not determined by qeff , but rather by the interfacial stress in the
screening layer (dominated by pos and E‖,0). Since this layer is thin compared to the colloid
radius, near the three-phase contact line the problem appears to be similar to that of a charged
plate half-immersed in water. For an order of magnitude estimate of εF we have used the
analytical solution for a fully immersed plate and obtain εF ∼ ε2/(πγβ2e2lG) = 1.2(σ nm2/e)
for the parameters discussed above. Thus, εF = 0.6 (as used in figure 1) is obtained for
σ = 0.5 e nm−2, not too far from the Debye–Hückel result. We emphasize that the occurrence
of a potential minimum for εF > εF,c (i.e., for a sufficiently large charge q) is a consequence of
the intermediate distance crossover in � from being pressure dominated (by E‖,0 and posm) to
tension dominated (by Ez,0+ ). This mechanism is captured correctly by the presently employed
approximations (point charge and Debye–Hückel treatment).

To summarize, we have calculated the effective intercolloidal potential for charged colloids
floating on a water interface. We have derived a general expression for the capillary potential as
an explicit functional of the stress on the interface. We have quantitatively studied the capillary
potential when the stress is due to the electrostatic field of charged colloids in the cases that
the radius R of the colloid compared with the Debye screening length κ−1 of water is either
very large or of about the same size. In both cases the asymptotic behaviour of the capillary
potential and of the direct electrostatic repulsion is equal, ∝d−3, but different in sign. The
superposition approximation, predicting a capillary potential ∝d−6, is insufficient because
it takes into account only the energy change as the subsystem ‘one colloid + surrounding
meniscus’ is shifted vertically in its own (single-colloid) force field. The correction to the
superposition approximation, embodied in �m, considers the additional force by the second
colloid. The capillary attraction only dominates for a sufficiently large charge and the total
intercolloidal potential exhibits an attractive minimum only if κ−1 ∼ R. This minimum can
be understood as a consequence of the pressure-to-tension crossover in the stress acting on the
interface. The depth of the potential minimum is significantly reduced compared to the natural
energy scale γ R2 of capillary interactions and is of the order of several kBT for parameters
relevant for actual experimental conditions.
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